Influence of Confinement on Dynamical Heterogeneities in Dense Colloidal Samples

ORAL

Abstract

We study a colloidal suspension confined between two parallel walls as a model system for glass transitions in confined geometries. The suspension is a mixture of two particle sizes to prevent wall-induced crystallization. We use confocal microscopy to directly observe the motion of the colloidal particles. This motion is slower in confinement, thus producing glassy behavior in a sample which is a liquid in an unconfined geometry. Like particles in an unconfined near-glassy system, groups of particles in our confined system move together cooperatively. Normally these groups would be spatially isotropic. However, the confining boundaries induce a layering of the particles. We show that the layering modifies the shapes of the mobile groups within the sample so that they are planar. We investigate how the planar restriction of the shapes of the mobile groups may be the cause of the sample's glassy behavior.

Authors

  • Kazem Edmond

    Department of Physics, Emory University

  • Milind Purohit

    Univ of South Carolina, Benedict College, Sc 29204, Univ. South Carolina, Benedict College, Univ South Carolina, GA Tech, Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa 52242, USA, Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA, Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, College of William \& Mary, Harvard University, Benedict College, SC 29204, Massachusetts Institute of Technology, University of Applied Science, Bielefeld, Germany, Francis Marion University, Physics Dept., Emory University, Emory University, Formerly Emory University, currently UCLA, Physics Department, Georgia State University, Univ. of Georgia, Dept. of Chemistry, Universidad Nacional de Quilmes, Argentina, Pr, Dr, Derpartment of Physics, Florida A\&M University, Tallahassee, FL-32307, Department of Physics, Emory University, Georgia Institute of Technology, Naval Research Laboratory, University of Alabama, Tsinghua University, Lawrence Berkeley National Laboratory, Vanderbilt University, Jagellonian Univ., Univ. of Bonn, North Carolina A\&T State Univ., North Carolina Central Univ., Duke Univ. and TUNL, Georgia State University, Dept of Physics, Emory University, Cell Biology Department, Emory University, Physics Department, Emory University, University of South Carolina

  • Eric R. Weeks

    Emory University, Physics Dept., Emory University, Department of Physics, Emory University