Enhanced nonlinear optics and other applications of resonant plasmonics

COFFEE_KLATCH · Invited

Abstract

A surface plasmon polariton is the result of a photon coupling to a collective charge excitation in an electron gas. It is the optical equivalent of ordinary electrical currents at lower frequencies. By this analogy, just as regular electronic circuits can have resonances at discrete frequencies, metal nanostructures can exhibit plasmonic resonances in the optical frequency regime. These resonances tend to concentrate the electromagnetic field intensity by several orders of magnitude within nanometer scale hotspots located at sharp corners or inside narrow gaps in the structure. This phenomenon can be used to enhance a number of different effects, such as Raman scattering, fluorescence efficiency and photochemical reactions. This talk will give an overview of some of our recent work in this area, focusing on using plasmons to enhance the second harmonic generation (SHG) from nonlinear optical films. In particular, we have shown that the addition of plasmonic nanoparticles to such a film can increase the SHG emission as much as 2000 times. We have applied this idea to SHG generation in tapered optical fiber, where we obtain quasi-phase matching by patterning the deposition of metal nanoparticles onto the otherwise uniform nonlinear film that coats the fiber. I will also discuss our recent work on plasmonically enhanced nonlinear microscopy and plasmon enhanced photovotaics. \\[4pt] In collaboration with Kai Chen, Chih-Yu Jao, Chalongrat Daengngam, Jeong-Ah Lee, and J. Randall Heflin, VirginiaTech, Department of Physics; Sungsool Wi, VirginiaTech, Department of Chemistry; Lauren Neely, Vladimir Kochergin, MicroXact, Inc.; and Yong Xu, Virginia Tech, Department of Electrical and Computer Engineering.

Authors

  • Rahul Kulkarni

    Materials and Structures Laboratory, Tokyo Institute of Technology, Jefferson Lab, 12000 Jefferson Avenue, MS 58, Suite 17, Newport News, VA 23606, VirginiaTech, Department of Physics, University of South Alabama, New York University, University of Tennessee Knoxville, Georgia College, North Georgia College \& State Univ., North Carolina Central University, TUNL, James Madison University, Physics Department, Hollins University; JQI, University of Aarhus, University of Tennessee, UNC at Asheville, The College of New Jersey, CERN, Florida Institute of Technology, Mechanical Engineering Department, University of New Mexico, Department of Physics, Florida State University, JINR, Vanderbilt, Tsinghua University, LBNL, Vanderbilt and LBNL, Vanderbilt University, Vanderbilt University, Tsinghua University, Vanderbilt University, LBNL, NBPHS, Vanderbilt University, Dept. of Physics and Astronomy - James Madison University, National High Magnetic Field Laboratory, U. of South Alabama Dept. of Chemistry, U. of South Alabama Dept. of Physics, Ohio State University, Wright State University, Engineering Science and Mechanics, Virginia Tech, US, Department of Nanobio Materials and Electronics, GIST, Republic of Korea, Department of Physics, Virginia Tech