Iron Nanoparticle M\"{o}ssbauer Spectroscopy with Rare-Earth Permanent Magnets

POSTER

Abstract

Properties of materials can be determined with a high degree of precision from M\"{o}ssbauer spectra. Due to the recoil energy of free particles, M\"{o}ssbauer spectroscopy is useful when the atoms are contained in a lattice structure. Resonance with the nucleus is achieved using gamma radiation. The Doppler effect is utilized by oscillating the radiation source thus modulating the energy of the gamma radiation. The recorded spectra show hyperfine splitting with intensities that depend on the angle of the gamma radiation with respect to the nuclear spin moment. For ferri- and ferro-magnets, the orientation of the magnetization and strength of the applied field can be inferred. For most paramagnets the magnetic susceptibility is on the order of 10$^{-6}$, and application of M\"{o}ssbauer spectroscopy requires low (a few Kelvin) temperature and large (a few Tesla) magnetic fields that are usually generated with superconducting magnets. However, for single-domain nanoparticles, or super-paramagnets, with susceptibility on the order of 10$^{-1}$ to 10$^{-2}$, a sizeable magnetization can be produced at room temperature in 1 Tesla fields. Such magnetic fields are obtainable with Nd-Fe-B permanent magnets. We present results of recent measurements on nanoparticles of iron.

Authors

  • L.D. Swafford

    University of Tennessee Space Institute, Tullahoma, TN, USA

  • C.G. Parigger

    University of Tennessee Space Institute, Tullahoma, TN, USA, University of Tennessee Space Institute, Tullahoma, TN

  • H.-Y. Hah

    The University of Tennessee Space Institute, University of Tennessee Space Institute, Tullahoma, TN, USA

  • S. Gray

    The University of Tennessee Space Institute, University of Tennessee Space Institute, Tullahoma, TN, USA

  • Chris Neu

    Florida State University, NHMFL, Institut Neel, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, Florida State University, Department of Physics, Florida State University, Tallahassee, FL, Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, Florida State University, National High Magnetic Field Laboratory, Institute of Physics, Chinese Academy of Sciences, China, Austin Peay State University, University of Pardubice, Davidson College, Covenant College, Lookout Mtn, GA 30750, Russian Academy of Sciences, Moscow, RU, University of Tennessee Space Institute, Tullahoma, TN, USA, Sandia National Laboratories,* Albuquerque, NM, Arkansas State University, Jonesboro, AK, None, Mississippi State University, Mississippi State University Department of Physics and Astronomy, Florida State University and the National High Magnetic Field Laboratory, Faculte des Sciences et Techniques and Universite Aix-Marseille, MIT Haystack Observatory, Departments of Chemistry and Physics, University of Tennessee of Chattanooga, Departments of Chemistry and Physics, University of Tennessee at Chattanooga, Western Kentucky University, Thomas Jefferson National Accelerator Facility, Newport News, VA, Fermilab, University of Virginia and Fermilab, Indiana University Bloomington, Indiana University Health Proton Therapy Center, University of North Florida, National Superconducting Cyclotron Laboratory, Michigan State University, Flordia State University, Louisiana State University, Washington University, Argonne National Laboratory, Lawrence Berkeley National Laboratory, Department of Physics, Florida State University., JINR, Tsinghua University, LBNL, LBNL/Vanderbilt University, Vanderbilt University, Florida A\&M University, Georgia Institute of Technology, Department of Physics, Virginia Tech, Gatton Academy, Exeter University, Florida International University, Office of Research, University of North Florida, Physics Department, University of North Florida, NSCL, Michigan State University, Physics Department, Florida State University, University of Tennessee-Knoxville, Neel Institut, Kazan Federal University, Bielefeld University, Ben Gurion University, LCIB - CEA, University of Georgia, Lawrence Livermore National Laboratory, Livermore, CA 94550, NHMFL, Tallahassee, USA, Department of Chemistry, University of Waterloo, Ontario, Canada, NHMFL, Tallahassee FL 32310 USA, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany, Wigner Research Center for Physics, Budapest, Hungary, Experimental physics II, University of Augsburg, Germany, Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, National High Magnetic Field Laboratory Florida State University, Tallahassee, Florida 32310, IM2NP-CNRS (UMR 7334) and Universite Aix-Marseille, National High Magnetic Field Laboratory Applied Superconductivity Center, Heifei National Lab for Physical Science at Microscale, USTC, Institute of Physics, Chinese Academy of Sciences, Department of Electrical Engineering, Rice University, National High Magnetic Field Laboratory, National High Magnetic Field Laboratory/FSU, University of Virginia

  • D. Warnberg

    University of Tennessee Space Institute, Tullahoma, TN, USA

  • C.E. Johnson

    The University of Tennessee Space Institute, University of Tennessee Space Institute, Tullahoma, TN, USA

  • J.A. Johnson

    The University of Tennessee Space Institute, University of Tennessee Space Institute, Tullahoma, TN, USA

  • Chris Neu

    Florida State University, NHMFL, Institut Neel, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, Florida State University, Department of Physics, Florida State University, Tallahassee, FL, Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, Florida State University, National High Magnetic Field Laboratory, Institute of Physics, Chinese Academy of Sciences, China, Austin Peay State University, University of Pardubice, Davidson College, Covenant College, Lookout Mtn, GA 30750, Russian Academy of Sciences, Moscow, RU, University of Tennessee Space Institute, Tullahoma, TN, USA, Sandia National Laboratories,* Albuquerque, NM, Arkansas State University, Jonesboro, AK, None, Mississippi State University, Mississippi State University Department of Physics and Astronomy, Florida State University and the National High Magnetic Field Laboratory, Faculte des Sciences et Techniques and Universite Aix-Marseille, MIT Haystack Observatory, Departments of Chemistry and Physics, University of Tennessee of Chattanooga, Departments of Chemistry and Physics, University of Tennessee at Chattanooga, Western Kentucky University, Thomas Jefferson National Accelerator Facility, Newport News, VA, Fermilab, University of Virginia and Fermilab, Indiana University Bloomington, Indiana University Health Proton Therapy Center, University of North Florida, National Superconducting Cyclotron Laboratory, Michigan State University, Flordia State University, Louisiana State University, Washington University, Argonne National Laboratory, Lawrence Berkeley National Laboratory, Department of Physics, Florida State University., JINR, Tsinghua University, LBNL, LBNL/Vanderbilt University, Vanderbilt University, Florida A\&M University, Georgia Institute of Technology, Department of Physics, Virginia Tech, Gatton Academy, Exeter University, Florida International University, Office of Research, University of North Florida, Physics Department, University of North Florida, NSCL, Michigan State University, Physics Department, Florida State University, University of Tennessee-Knoxville, Neel Institut, Kazan Federal University, Bielefeld University, Ben Gurion University, LCIB - CEA, University of Georgia, Lawrence Livermore National Laboratory, Livermore, CA 94550, NHMFL, Tallahassee, USA, Department of Chemistry, University of Waterloo, Ontario, Canada, NHMFL, Tallahassee FL 32310 USA, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany, Wigner Research Center for Physics, Budapest, Hungary, Experimental physics II, University of Augsburg, Germany, Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, National High Magnetic Field Laboratory Florida State University, Tallahassee, Florida 32310, IM2NP-CNRS (UMR 7334) and Universite Aix-Marseille, National High Magnetic Field Laboratory Applied Superconductivity Center, Heifei National Lab for Physical Science at Microscale, USTC, Institute of Physics, Chinese Academy of Sciences, Department of Electrical Engineering, Rice University, National High Magnetic Field Laboratory, National High Magnetic Field Laboratory/FSU, University of Virginia