Fabrication of ZnO Nanostructure Based Polyvinylidene Fluoride Nanocomposites for Energy Application

POSTER

Abstract

Zero- and one- dimensional nanostructures process many unique physical and chemical properties. With the advanced nanotechnology and computational capability, it is now possible to produce artificial and sophisticated nanostructures and systems beyond what nature can provide. The structure-by-design with bottom-up approach is expected to be the game changer but requires technological breakthroughs in many fronts. ZnO nanoparticles (NPs) and nanowires (NWs) have shown to have a broad applications ranging from optoelectronic, piezotronic, chemical and sensing. Polyvinylidene fluoride (PVDF) is another example of widely used functional crystalline polymers. It is chemical inert, optically transparent, flexible, and ferroelectric. PVDF has four crystalline structures highly dependent on the processing procedures, history, and interactions at molecular level when multicomponent composites are fabricated. Thus, the combined ZnO and PVDF composite may have the potential in ferro-, piezo- and opto-tronic applications. Our preliminary research of ZnO $+$ PVDF nanocomposite has shown a huge optical emission enhancement when ZnO nanostructures are confined in composite form. It is very stable under different environments protected by PVDF matrix. The presentation includes structural and optical characterization, and piezoelectric testing.

Authors

  • Sarah Pak

    Fisk Univ

  • Brigham Mu

    Fisk Univ

  • J.K. Hwang

    Western Kentucky University, University of Pardubice, Francis Marion University, Clemson University Professor, Francis Marion University Professor, Undergraduate Administrator, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Austin Peay State University, University Strenwarte-Muenchen, Seoul National University, Gatton Academy for Science and Mathematics, Alabama A\&M University, Cygnus, Center for Nanophase Materials Science at Oak Ridge National Laboratory, Vanderbilt University, Fisk Univ, 2Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, NOVA Center, Western Kentucky University, Department of Physics, Florida A\&M University, Tallahassee, FL-32307, Correlated Electron Materials Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6061 USA, Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA, The Institute of Optics, University of Rochester, Rochester, NY 14627, USA, Universidade Estadual Paulista (UNESP), Clark Atlanta University, Deapartment of Physics \& Astronomy, Georgia State University, USA, Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada, Oak Ridge National Laboratory, University of South Alabama, Samford University, University of Rochester, University of North Carolina, Chapel Hill, Sandia National Laboratories, New Mexico State University, University of Tennessee Space Institute, Shanghai Jiao Tong University, Shanghai, China, University of Leeds, Leeds, UK, Georgia State University, Atlanta GA, University of Alabama at Birmingham, National High Magnetic Field Laboratory, Prairie View A\&M University, Brookhaven National Laboratory, University of Southern Indiana, Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, JINR(Dubna), Tsinghua Univ., LBNL, Vanderbilt Univ., Vanderbilt Univ./Univ. of Tennessee, Knoxville, Vanderbilt Univ./Univ. of Kentucky, GANIL, Vanderbilt Univ./Union Univ., JINR, ORAU, Tsinghua University, LNBL

  • J.K. Hwang

    Western Kentucky University, University of Pardubice, Francis Marion University, Clemson University Professor, Francis Marion University Professor, Undergraduate Administrator, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Austin Peay State University, University Strenwarte-Muenchen, Seoul National University, Gatton Academy for Science and Mathematics, Alabama A\&M University, Cygnus, Center for Nanophase Materials Science at Oak Ridge National Laboratory, Vanderbilt University, Fisk Univ, 2Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, NOVA Center, Western Kentucky University, Department of Physics, Florida A\&M University, Tallahassee, FL-32307, Correlated Electron Materials Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6061 USA, Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA, The Institute of Optics, University of Rochester, Rochester, NY 14627, USA, Universidade Estadual Paulista (UNESP), Clark Atlanta University, Deapartment of Physics \& Astronomy, Georgia State University, USA, Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada, Oak Ridge National Laboratory, University of South Alabama, Samford University, University of Rochester, University of North Carolina, Chapel Hill, Sandia National Laboratories, New Mexico State University, University of Tennessee Space Institute, Shanghai Jiao Tong University, Shanghai, China, University of Leeds, Leeds, UK, Georgia State University, Atlanta GA, University of Alabama at Birmingham, National High Magnetic Field Laboratory, Prairie View A\&M University, Brookhaven National Laboratory, University of Southern Indiana, Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, JINR(Dubna), Tsinghua Univ., LBNL, Vanderbilt Univ., Vanderbilt Univ./Univ. of Tennessee, Knoxville, Vanderbilt Univ./Univ. of Kentucky, GANIL, Vanderbilt Univ./Union Univ., JINR, ORAU, Tsinghua University, LNBL

  • Richard Mu

    Fisk University, Fisk Univ

  • Eugene Collins

    Fisk Univ, Fisk University