Positively Charged Muonium Diffusion in In$_{\mathrm{2}}$O$_{\mathrm{3}}$

ORAL

Abstract

Indium oxide (In$_{\mathrm{2}}$O$_{\mathrm{3}})$ is a transparent conducting oxide (TCO) commonly found in mixtures used as windows and transparent electrodes in optical semiconductor devices (i.e. LEDs and solar cells). Hydrogen diffusion in the TCO layer and across the interface between the TCO and the semiconductor device plays an important role in the degradation of the transparency of TCO windows or electrodes. Theoretical calculations show positive H as the only stable, interstitial H charge state above the neutral H ionization temperature. Muon Spin Relaxation measurements were performed to investigate positive muonium (Mu$^{\mathrm{+}})$ diffusion which are an experimentally accessible analog to H$^{\mathrm{+}}$. Three distinct Mu$^{\mathrm{+}}$ states are identified between 2 K and 1000 K; a static low temperature state, a dynamic state above room temperature, and a trapping state from 400 K to 800 K. The trap component creates complex dynamics and has been modeled assuming the Mu$^{\mathrm{+}}$ transfers between the dynamic state and the trapping state. Fits of the model to the data provide information about capture and release rates and energy barriers into and out of the trap state. Here we present and discuss results from these fits, possible site locations for each state and likely diffusion paths.

Authors

  • Brittany Baker

    Francis Marion University

  • Roger Lichti

    Texas Tech University

  • Patrick Mengyan

    Northern Michigan University

  • Jonathan Tan

    Duquesne University, Baker Hughes, Hampton University, Korea Research Institute of Standards and Science, Electronics and Telecommunications Research Institute, Texas Christian University, University of North Texas Health Science Center, Austin Peay State University, Virginia Military Institute, Pennsylvania State University, University of Virginia, Washington University, National Institute for Materials Science, Japan, Tokyo Metropolitan University, Japan, Univ of Kentucky, Argonne National Laboratory, Oak Ridge National Laboratory, Univ of Virginia, James Madison University, Department of Chemistry & Biochemistry, High Point University, Department of Chemistry, High Point University, Department of Physics, James Madison University, Department of Physics & Astronomy, Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, Institute of Renewable Energy and Environment Technology, University of Bolton, Bolton, UK, Division of Materials Science and Engineering, Ames Laboratory, US Dept. of Energy, Ames, IA, Lehigh University, University of Pardubice, Universite de Rennes, Jan Dlugosz University, Translume, NSCL/FRIB, Duke University, University of Massachusetts - Amherst, University of St. Andrews, National Radio Astronomy Observatory, University of Florida, Yale University, None, Georgia College & State Univ, Georgia College & State University, National University of Sciences and Technology (NUST), Univ of Tennessee Space Inst, The University of Virginia, Chiang Mai University, DHA Suffa University, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic, Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN, United States, George Mason University, Northern Virginia Community College, Department of Physics, University of Virginia, Istanbul University, Georgia College and State University, University of Houston, Western Kentucky Univ, James Madison University, Virginia Polytechnic Institute and State University, Pontifica Universidad Catolica de Chile, Trent University, Univ of Arizona, Ohio State University, NRAO, University of Virginia/NRAO