Characterization of nano-level coefficient of friction of oleophobic and superhydrophobic coatings on 316L SS in harsh conditions

ORAL

Abstract

316L SS is widely used in marine applications due to its high resistance to corrosion. This study emphasizes on investigating the commercially available superhydrophobic / oleophobic coatings applied over 316L SS and subsequently finding out the nano-level coefficient of friction. Samples of 316L SS were prepared and coated with three oleophobic coatings. After coating, one set of samples were tested in sand-storm conditions and another set in sea-breeze conditions. Lateral Force Microscopy (LFM) has been used to determine the coefficient of friction at nano-level. The coefficient of friction is associated with the amount of wear. The coefficient of friction is obtained for three states; before coating, after coating and after sand-storm / sea-breeze condition. From the comparison of results, the performance of the coating has been evaluated. The coefficient of friction changed drastically when the coated samples were exposed to sand-storm conditions whereas very little difference was observed for sea-breeze condition. Since oleophobic coating prevents a material from corrosion as well as erosion, it was seen that the coating was damaged after a considerable amount of time and it protected the base substrate from being exposed to the environment.

Authors

  • Hamza Shams

    DHA Suffa University (DSU), DHA Suffa University

  • Jonathan Tan

    Duquesne University, Baker Hughes, Hampton University, Korea Research Institute of Standards and Science, Electronics and Telecommunications Research Institute, Texas Christian University, University of North Texas Health Science Center, Austin Peay State University, Virginia Military Institute, Pennsylvania State University, University of Virginia, Washington University, National Institute for Materials Science, Japan, Tokyo Metropolitan University, Japan, Univ of Kentucky, Argonne National Laboratory, Oak Ridge National Laboratory, Univ of Virginia, James Madison University, Department of Chemistry & Biochemistry, High Point University, Department of Chemistry, High Point University, Department of Physics, James Madison University, Department of Physics & Astronomy, Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, Institute of Renewable Energy and Environment Technology, University of Bolton, Bolton, UK, Division of Materials Science and Engineering, Ames Laboratory, US Dept. of Energy, Ames, IA, Lehigh University, University of Pardubice, Universite de Rennes, Jan Dlugosz University, Translume, NSCL/FRIB, Duke University, University of Massachusetts - Amherst, University of St. Andrews, National Radio Astronomy Observatory, University of Florida, Yale University, None, Georgia College & State Univ, Georgia College & State University, National University of Sciences and Technology (NUST), Univ of Tennessee Space Inst, The University of Virginia, Chiang Mai University, DHA Suffa University, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic, Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN, United States, George Mason University, Northern Virginia Community College, Department of Physics, University of Virginia, Istanbul University, Georgia College and State University, University of Houston, Western Kentucky Univ, James Madison University, Virginia Polytechnic Institute and State University, Pontifica Universidad Catolica de Chile, Trent University, Univ of Arizona, Ohio State University, NRAO, University of Virginia/NRAO

  • Kanza Basit

    National University of Sciences and Technology (NUST)

  • Jonathan Tan

    Duquesne University, Baker Hughes, Hampton University, Korea Research Institute of Standards and Science, Electronics and Telecommunications Research Institute, Texas Christian University, University of North Texas Health Science Center, Austin Peay State University, Virginia Military Institute, Pennsylvania State University, University of Virginia, Washington University, National Institute for Materials Science, Japan, Tokyo Metropolitan University, Japan, Univ of Kentucky, Argonne National Laboratory, Oak Ridge National Laboratory, Univ of Virginia, James Madison University, Department of Chemistry & Biochemistry, High Point University, Department of Chemistry, High Point University, Department of Physics, James Madison University, Department of Physics & Astronomy, Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, Institute of Renewable Energy and Environment Technology, University of Bolton, Bolton, UK, Division of Materials Science and Engineering, Ames Laboratory, US Dept. of Energy, Ames, IA, Lehigh University, University of Pardubice, Universite de Rennes, Jan Dlugosz University, Translume, NSCL/FRIB, Duke University, University of Massachusetts - Amherst, University of St. Andrews, National Radio Astronomy Observatory, University of Florida, Yale University, None, Georgia College & State Univ, Georgia College & State University, National University of Sciences and Technology (NUST), Univ of Tennessee Space Inst, The University of Virginia, Chiang Mai University, DHA Suffa University, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic, Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN, United States, George Mason University, Northern Virginia Community College, Department of Physics, University of Virginia, Istanbul University, Georgia College and State University, University of Houston, Western Kentucky Univ, James Madison University, Virginia Polytechnic Institute and State University, Pontifica Universidad Catolica de Chile, Trent University, Univ of Arizona, Ohio State University, NRAO, University of Virginia/NRAO