Nanofibrous gelatin structures: Effect of high-yield electrospinning on the fiber formation and stability

ORAL

Abstract

Nanofibrous biopolymer materials represent an attractive platform for many biomedical applications. Such materials are frequently made by the electrospinning process, which is based on complex electrohydrodynamic phenomena leading to the formation of solid nanofibers from electrified polymer solutions. Textural properties and composition of nanofibers and fibrous assemblies play a big role in the physiological performance of electrospun biopolymer structures. In this study, gelatin nanofibers were produced at a rate of up to 20 g/h by using a recently developed high-yield free-surface electrospinning process. The dense nanofibrous flow in this process moves at 0.2–0.7 m/s speed due to the effect of ionic wind, which allowed easy assemblage of the resulting nanofibers. Depending on the type of gelatin and process parameters, the fiber diameter varied from 100 nm to 2000 nm. Nanofibrous gelatin mats with up to 3 mm thickness were physically and chemically crosslinked to increase the material stability in simulated body fluids (SBFs). The effect of process conditions on the changes in the fiber morphology and textural properties of as-prepared, crosslinked, and SBF-exposed nanofibrous mats was explored. Initial results on the tensile properties of gelatin nanofibers are discussed.

Authors

  • Amanda Kennell

    University of Alabama in Birmingham

  • S.S. Gupta

    Department of Applied Mathematics & Sciences, Khalifa University, Abu Dhabi 127788, UAE, Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA, Indian Institute of Technology Ropar, Nangal Road, Rupnagar (Ropar), Punjab 140 001, India, The Institute for Nuclear Research, Moscow, Davidson Coll, Western kentucky University, Bowling Green, KY 42101, Naval Postgraduate School, Austin Peay State University, Univ of Tennessee, Knoxville, University of Nebraska, Rajarata University of Sri Lanka, University of West Georgia, Department of Physics, University of Alabama at Birmingham, Center for High Pressure Science and Technology Advanced Research, Northwestern Univ, Univ of Virginia, Western Kentucky University, Physics Dept. Bowling Green, KY, Department of Physics, The University of Texas-Rio Grande Valley, TX 78539, Western Kentucky University, Bowling Green, KY 42101, Western Kentucky University, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom, Austin Peay State Univ, University of Pardubice, Clemson University, Appalachian State Univ, Department of Physics, University of West Georgia, Department of Geosciences, University of West Georgia, Department of Physics and Astronomy, Georgia State University, Francis Marion University, The Pennsylvania State University, Auburn University, Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, Department of Physics, Brigham Young University-Idaho, Rexburg, Idaho, Department of Physics,North Carolina State University, William Mong Institute of Nano Science and Technology, MSTD, Oak Ridge National Laboratory, Department of Physics and Astronomy, Vanderbilt University, Univ of Bristol, University of Alabama in Birmingham, Georgia Institute of Technology, Sandia National Laboratories, University of South Florida

  • S.S. Gupta

    Department of Applied Mathematics & Sciences, Khalifa University, Abu Dhabi 127788, UAE, Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA, Indian Institute of Technology Ropar, Nangal Road, Rupnagar (Ropar), Punjab 140 001, India, The Institute for Nuclear Research, Moscow, Davidson Coll, Western kentucky University, Bowling Green, KY 42101, Naval Postgraduate School, Austin Peay State University, Univ of Tennessee, Knoxville, University of Nebraska, Rajarata University of Sri Lanka, University of West Georgia, Department of Physics, University of Alabama at Birmingham, Center for High Pressure Science and Technology Advanced Research, Northwestern Univ, Univ of Virginia, Western Kentucky University, Physics Dept. Bowling Green, KY, Department of Physics, The University of Texas-Rio Grande Valley, TX 78539, Western Kentucky University, Bowling Green, KY 42101, Western Kentucky University, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom, Austin Peay State Univ, University of Pardubice, Clemson University, Appalachian State Univ, Department of Physics, University of West Georgia, Department of Geosciences, University of West Georgia, Department of Physics and Astronomy, Georgia State University, Francis Marion University, The Pennsylvania State University, Auburn University, Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, Department of Physics, Brigham Young University-Idaho, Rexburg, Idaho, Department of Physics,North Carolina State University, William Mong Institute of Nano Science and Technology, MSTD, Oak Ridge National Laboratory, Department of Physics and Astronomy, Vanderbilt University, Univ of Bristol, University of Alabama in Birmingham, Georgia Institute of Technology, Sandia National Laboratories, University of South Florida