Atom Pairing in Optical Superlattices

ORAL

Abstract

We study the pairing of fermions in a one-dimensional optical superlattice of tunable double-well potentials using radio frequency spectroscopy. The observed spectra reveal the coexistence of two types of atom pairs with different symmetries for their center of mass wave functions. Our measurements are in excellent quantitative agreement with the predicted spectra comprising hundreds of discrete transitions, with symmetry-dependent initial state populations and transition strengths. Our work provides an understanding of the elementary pairing states in a superlattice, paving the way for new studies of strongly interacting many-body systems.

Authors

  • Jayampathi Kangara

    North Carolina State University, Department of Physics,North Carolina State University

  • S.S. Gupta

    Department of Applied Mathematics & Sciences, Khalifa University, Abu Dhabi 127788, UAE, Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA, Indian Institute of Technology Ropar, Nangal Road, Rupnagar (Ropar), Punjab 140 001, India, The Institute for Nuclear Research, Moscow, Davidson Coll, Western kentucky University, Bowling Green, KY 42101, Naval Postgraduate School, Austin Peay State University, Univ of Tennessee, Knoxville, University of Nebraska, Rajarata University of Sri Lanka, University of West Georgia, Department of Physics, University of Alabama at Birmingham, Center for High Pressure Science and Technology Advanced Research, Northwestern Univ, Univ of Virginia, Western Kentucky University, Physics Dept. Bowling Green, KY, Department of Physics, The University of Texas-Rio Grande Valley, TX 78539, Western Kentucky University, Bowling Green, KY 42101, Western Kentucky University, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom, Austin Peay State Univ, University of Pardubice, Clemson University, Appalachian State Univ, Department of Physics, University of West Georgia, Department of Geosciences, University of West Georgia, Department of Physics and Astronomy, Georgia State University, Francis Marion University, The Pennsylvania State University, Auburn University, Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, Department of Physics, Brigham Young University-Idaho, Rexburg, Idaho, Department of Physics,North Carolina State University, William Mong Institute of Nano Science and Technology, MSTD, Oak Ridge National Laboratory, Department of Physics and Astronomy, Vanderbilt University, Univ of Bristol, University of Alabama in Birmingham, Georgia Institute of Technology, Sandia National Laboratories, University of South Florida

  • Saeed Pegahan

    North Carolina State University, Department of Physics,North Carolina State University

  • Ilya Arakelyan

    North Carolina State University, Department of Physics,North Carolina State University

  • John Thomas

    North Carolina State University, Department of Physics,North Carolina State University