Reaction Kinetics of Nanostructured Silicon Carbide

ORAL

Abstract

Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder ($<$ 30 nm) and carbon multi-walled nanotubes with diameter 60 - 100 nm at five different temperatures below the melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

Authors

  • Kendra Wallis

  • Dana Dunn

    University of Texas at Arlington, Peoples Friendship University of the Russia, TSAAPT Officer, University of Texas at El Paso, Department of Chemistry, Stephen F. Austin University, Department of Physics, Stephen F. Austin University, Highland Park High School, Dallas, Texas, Lamar High School, Arlington, Texas, Angelo State University, Abilene Christian University, Southern Nazarene University, Texas Tech University, Sam Houston State University, University of Texas at Austin, Cornell University, University of Houston, University of Texas Center for Relativity, Ion Beam Modification and Analysis Laboratory (IBMAL), University of North Texas, University of North Texas, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, UTA High Energy Physics Group, Univ. of Texas, Arlington, USA, KAERI Korea, Changwon National Univ., Korea, Rutgers University, Iowa State University, Rigaku/MSC, Texas Christian University, Dept. of Physics, Changwon National University, Department of Physics, University of North Texas, Department of Chemistry and Biochemistry, Arizona State University, Research Center, Philip Morris USA, Harrington Department Bioengineering Arizona State University, Universidad Autonoma de Colima, Universidad de Buenos Aires, Department of Physics, University of Texas, Arlington, Chair, Department of Physics, University of Texas at Arlington, Dean of Science, University of Texas at Arlington, President, University of Texas at Arlington, Department of Electrical Engineering, Princeton University, Department of Physics, Texas A\&M University, NanoFAB Center and Electrical Engineering Department, University of Texas at Arlington, University of Texas at San Antonio, SEMATECH, University of Texas at Dallas, CINVESTAV Queretaro, Mexico and University of Texas at Dallas, Texas A\&M University, Departamento de F\&#039;isica, FCEN, Universidad de Buenos Aires, Freescale Semiconductor, Inc., Department of Physics, UT Austin, Physics Department, The University of Texas at Arlington, Department of Physics, University of Texas at Arlington, Tolar High School, Granbury High School