Altering Beamline Components to Reduce the Cost of Prostate Cancer Treatment

ORAL

Abstract

Proton beam therapy is an advanced technique used for the control of localized cancers. Currently it is one of the most cutting edge treatment options for prostate cancer but is still scarce and expensive. The expense is due, in part, to the unique beam collimators and range compensators that are manufactured for each treatment beam. The purpose of this study is to determine whether the custom collimator could be replaced by a reusable multileaf collimator and by eliminating the range compensator. Treatment plans were retrospectively selected for 10 patients who were treated for prostate cancer with 69 Gy delivered by two proton treatment fields. The originals were altered to include the multileaf collimator and to eliminate the range compensators. The dose distributions for each plan were calculated using a treatment planning system, which uses an analytical dose algorithm. They were then verified with Monte Carlo simulations, which are able to take into account individual particle trajectories and calculate dose resulting from stray neutron exposure. The calculated dose distributions for the altered treatments were dosimetrically equal or superior to the original plans. Our findings suggest that the proton-beam treatment technique for prostate cancer could be substantially simplified, thus yielding substantial cost savings.

Authors

  • T. Jones

    The University of Texas M. D. Anderson Cancer Center

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory