Quantum Anomalous Hall Effect with Cold Atoms Trapped in a Square Lattice

ORAL

Abstract

Realization of quantum anomalous Hall effect (QAHE) [1] not only has the potential applications through the study of topological phases such as the technologically important topological insulators, but also has great interest from a basic physics point of view. In this work we propose the realization of the QAHE in a square optical lattice which can be generated from available experimental set-ups of double-well lattices with minor modifications [2]. A periodic gauge potential induced by atom-light interaction is introduced to give a Peierls phase for the nearest-neighbor site hopping to break time-reversal symmetry. The quantized anomalous Hall conductivity is investigated by calculating the Chern number as well as the chiral gapless edge states of our system. We study in detail the experimental detection of the edge and bulk states with which one can determine the topological phase transition from usual insulating phase to quantum anomalous Hall phase. Reference: [1] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). [2] X. -J. Liu, X. Liu, C. Wu and J. Sinova, submitted to PRL for publication (2009).

Authors

  • Xiong-Jun Liu

    Department of Physics, Texas A\&M University, College Station, Texas 77843-4242

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory

  • Mikhail Zhernenkov

    Angelo State University Department of Physics, Department of Electrical and Computer Engineering, Texas Tech University, The University of Texas at San Antonio, Univeristy of Central Florida-College of Optics and Photonics, BAE Systems, University of Alberta Department of Physics, Istanbul University Department of Physics, Texas Tech University Department of Physics, Istanbul University, Beyazit, University of Alberta, Edmonton, UTD, TAMS at UNT, Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, College of Nanoscale Science and Engineering, University at Albany, Dept. of Physics, University of New Orleans, University of Texas at Arlington, Prairie View A\&M University, Chemistry, UTSA, Sciprint.org, Texas Tech University Department of Electrical and Computer Engineering, Texas State University, Punjab U, Dept. of Mechanical Engineering, University of Texas, Dept. of Physics, Texas State University, Department of Physics, University of Texas at Dallas, Richardson TX 75080, Department of Physics, Texas A\&M University, College Station, Texas 77843-4242, Department of Physics, University of California, San Diego, California 92093, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil, Universidade de Sao Paulo, Sao Paulo, SP, Brazil, Department of Physics, Texas A\&M University, University of Colorado at Colorado Springs, Federal University of Rio Grande do Norte, University of Texas Arlington, Harvard-Smithsonian Center for Astrophysics, Max Plank Institute, Dresden, Germany, Education Consultant, APS, The University of Texas M. D. Anderson Cancer Center, Department of Physics, Texas A\&M University, College Station, TX 77843, LANSCE, Los Alamos National Laboratory