Experimental Investigation of the Possibility for Negative Refraction in Si Opals

POSTER

Abstract

Synthetic opals are photonic crystals made of silica nano-spheres arranged in a FCC crystalline structure. Such opals are believed to possess negative refraction for certain wavelength of light. We propagate two laser beams (405 nm and 705 nm) through opal prisms and measure their angles of refraction. We also use a broadband light source to select several frequencies in the visible range with a diffraction grating. In addition, we study the photonic band gaps in this material. For certain directions of the incident light the opal samples exhibit total reflection due to the existence of the photonic band gap.

Authors

  • Liliana Ruiz-Diaz

    Department of Physics, University of Texas at Brownsville

  • Malik Rakhmanov

    Department of Physics, University of Texas at Brownsville

  • Volker Quetschke

    Department of Physics, University of Texas at Brownsville

  • Andrey Chabanov

    West Texas A\&M University, Rhodes College, Texas Woman's University, University of Texas at San Antonio, Texas A\&M University, Department of Physics, University of Texas at Arlington, Texas State University, Pajarito Scientific Corporation, Idaho National Laboratory, Duke University, UNC, Department of Chemistry, UTSA, Department of Physics and Astronomy, UTSA, The University of Texas at San Antonio, Harvar-Smithsonian Center for Astrophysics, University of New Mexico, Maria Mitchel Observatory, NRAO, University of Alabama, Trinity University, Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, V. Alecsandri College, Bacau, Romania, University of Texas at Dallas, Argonne National Laboratory, Western Michigan University, Institute of Physics, UNAM, Mexico, University of North Texas - Chemistry, University of St. Thomas, SwRI San Antonio, Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Department of Electrical and Computer Engineering, University of Texas at Arlington, Department of Physics, University of Texas at Brownsville, SciPrint.org, The University of Texas at Austin, Georgia Tech, MIT, University of Tennessee, University of Michigan, ORNL, Texas A&M University-Commerce, University of Texas San Antonio, University of Texas at Brownsville, University of Dallas, Sternberg Astronomical Institute, SwRI, CU-Boulder, SwRI/UTSA, Southwest Research Institute, JILA, University of Colorado, Department of Physics, Texas A\&M University, Stephen F. Austin State University, Angelo State University, St. Mary's University, Physics Department, University of South Florida, CINVESTAV, Queretaro, Mexico, Department of Physics, UCSD, LANSCE, Los Alamos National Laboratory, Department of Physics and Astronomy, Texas A\&M University, Texas A\&M University: Department of Physics, Texas Christian University, Fort Worth, TX, Paschal High School, Fort Worth, TX, Tarleton State University, Stephenville, TX, Paine College, Augusta, GA, University of Houston, University of Texas at Arlington, IREAP, Department of Physics, University of Maryland, Air Force Research Laboratory, Institute for Quantum Studies and Department of Physics, Texas A\&M Universtity, College Station, Texas 77843, USA, Max-Planck Institut for Kernphysik, Saupfercheckweg 1,D-69117 Heidelberg, Germany, The National Center for Mathematics and Physics, P.O. Box 6086, KACST, Riyadh 11442, Saudi Arabia