A Newtonian Explanation of the Hydrogen Fine Structure

ORAL

Abstract

The Hydrogen spectrum as seen by low dispersion spectrometers is correctly described by a classical theory founded on Ritz's magnetic model. With increasingly powerful instruments, individual lines are split into smaller groupings that are three orders of magnitude smaller. Arnold Sommerfeld was the first to develop a theory based on the mass variation of the electron to correctly describe this ``fine'' structure. A few years later, Vannevar Bush pointed out that Weber's force law could be used instead of Einstein's theory of relativity. We will utilize this line of approach to present a purely classical theory of the fine structure of the Hydrogen atom. Ritz's theory of electromagnetism replaces Weber's law; we will summarize all the other atomic physics experiments that our classical theory already describes correctly. Finally we will show how this fine structure theory logically paves the way for an explanation of the linear Stark effect.

Authors

  • Andrey Chabanov

    West Texas A\&M University, Rhodes College, Texas Woman's University, University of Texas at San Antonio, Texas A\&M University, Department of Physics, University of Texas at Arlington, Texas State University, Pajarito Scientific Corporation, Idaho National Laboratory, Duke University, UNC, Department of Chemistry, UTSA, Department of Physics and Astronomy, UTSA, The University of Texas at San Antonio, Harvar-Smithsonian Center for Astrophysics, University of New Mexico, Maria Mitchel Observatory, NRAO, University of Alabama, Trinity University, Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, V. Alecsandri College, Bacau, Romania, University of Texas at Dallas, Argonne National Laboratory, Western Michigan University, Institute of Physics, UNAM, Mexico, University of North Texas - Chemistry, University of St. Thomas, SwRI San Antonio, Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Department of Electrical and Computer Engineering, University of Texas at Arlington, Department of Physics, University of Texas at Brownsville, SciPrint.org, The University of Texas at Austin, Georgia Tech, MIT, University of Tennessee, University of Michigan, ORNL, Texas A&M University-Commerce, University of Texas San Antonio, University of Texas at Brownsville, University of Dallas, Sternberg Astronomical Institute, SwRI, CU-Boulder, SwRI/UTSA, Southwest Research Institute, JILA, University of Colorado, Department of Physics, Texas A\&M University, Stephen F. Austin State University, Angelo State University, St. Mary's University, Physics Department, University of South Florida, CINVESTAV, Queretaro, Mexico, Department of Physics, UCSD, LANSCE, Los Alamos National Laboratory, Department of Physics and Astronomy, Texas A\&M University, Texas A\&M University: Department of Physics, Texas Christian University, Fort Worth, TX, Paschal High School, Fort Worth, TX, Tarleton State University, Stephenville, TX, Paine College, Augusta, GA, University of Houston, University of Texas at Arlington, IREAP, Department of Physics, University of Maryland, Air Force Research Laboratory, Institute for Quantum Studies and Department of Physics, Texas A\&M Universtity, College Station, Texas 77843, USA, Max-Planck Institut for Kernphysik, Saupfercheckweg 1,D-69117 Heidelberg, Germany, The National Center for Mathematics and Physics, P.O. Box 6086, KACST, Riyadh 11442, Saudi Arabia

  • James Espinosa

    Rhodes College

  • James Woodyard

    West Texas A\&M University