Common-path spectral phase microscopy

ORAL

Abstract

Quantitative phase microscopy is an emerging non-contact method for quantifying physical properties (refractive index, thickness) of materials. The high spatial resolution achieved with millisecond-scale resolution using this non-staining method over a wide-field of view is highly advantageous for mapping dynamic changes in the sample properties due to temperature, pressure and molecular interactions. Since refractive index dispersion is intrinsic to a material, he spectral measurement of refractive index changes will allow characterization and analytical quantification of material. Here, we introduce common-path spectral phase microscopic (CP-SPM) imaging of microscopic objects. CP-SPM is based on a common path interferometer with a tunable laser beam With this method, we are able to characterize both the refractive index of particles over a continuous wavelength band, and also the characteristics of several types of particles simultaneously.

Authors

  • Allan Headley

    Texas A\&M, Sam Houston State University, Southern Methodist University, Dept of Physics, Texas Tech University, Depts of Cell Physiology and Molecular Biophysics, Texas Tech University HSC, Texas Tech University, Lee College, Texas A\&M University, Texas A\&M Univ.-Commerce, University of North Texas, Texas A\&M University and Princeton University, Princeton University, The University of North Texas, University of Texas at Austin, Center for High Energy Density Science, University of Texas at Austin, Institute for Fusion Studies, University of Texas at Austin, UT Arlington, Stephen F. Austin State University, Texas A&M University--Commerce, University of Texas at Dallas, University of Texas at El Paso, Department of Physics, The University of Texas at Dallas, Department of Physics and Astronomy, Francis Marion University, University of Texas at Brownsville, Texas State University--San Marcos, UTSA, Northwestern University, Rice University, Abilene Christian University, Texas Southern University, Department of Physics, Southern Methodist University, Dallas, Texas A\&M University Cyclotron Institute, Sciprint.org, University of Texas MD Anderson Cancer Center, University of Texas at San Antonio, Paschal High School, Fort Worth, TX, Department d'Enginyeria Electronica, Universitat Autonoma de Barcelona, Department of Physics, Texas State University at San Marcos, Texas State University at San Marcos, Angelo State University, Texas State University-San Marcos, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, Department of Medicine, Baylor College of Medicine, Department of Bioengineering, Rice University, Department of Physics and Astronomy, Rice University, Department of Surgery, University of Texas Southwestern Medical Center, University of Texas at Dallas, Physics, Viginia State University, Jefferson Laboratory, Trinity University, LIGO, UTB-TSC, Mount Holyoke College, Texas A&M University, Electrical and Computer Engineering, TAMU, American Institute of Physics, University of Texas at Arlington, Texas Christian University, Fort Worth, TX, University of Pennsylvania, Philadelphia, PA, University of Missouri-Columbia, Columbia, MO, Paine College, Augusta, GA, Univ. of Edinburgh, INFN-LNS, INFN LNS CATANIA ITALY, Arkansas Technical University, AR, USA, Cyclotron Institute Texas A\&M University College Station Usa, and Heather Galloway, Texas State University--San Marcos

  • Allan Headley

    Texas A\&M, Sam Houston State University, Southern Methodist University, Dept of Physics, Texas Tech University, Depts of Cell Physiology and Molecular Biophysics, Texas Tech University HSC, Texas Tech University, Lee College, Texas A\&M University, Texas A\&M Univ.-Commerce, University of North Texas, Texas A\&M University and Princeton University, Princeton University, The University of North Texas, University of Texas at Austin, Center for High Energy Density Science, University of Texas at Austin, Institute for Fusion Studies, University of Texas at Austin, UT Arlington, Stephen F. Austin State University, Texas A&M University--Commerce, University of Texas at Dallas, University of Texas at El Paso, Department of Physics, The University of Texas at Dallas, Department of Physics and Astronomy, Francis Marion University, University of Texas at Brownsville, Texas State University--San Marcos, UTSA, Northwestern University, Rice University, Abilene Christian University, Texas Southern University, Department of Physics, Southern Methodist University, Dallas, Texas A\&M University Cyclotron Institute, Sciprint.org, University of Texas MD Anderson Cancer Center, University of Texas at San Antonio, Paschal High School, Fort Worth, TX, Department d'Enginyeria Electronica, Universitat Autonoma de Barcelona, Department of Physics, Texas State University at San Marcos, Texas State University at San Marcos, Angelo State University, Texas State University-San Marcos, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, Department of Medicine, Baylor College of Medicine, Department of Bioengineering, Rice University, Department of Physics and Astronomy, Rice University, Department of Surgery, University of Texas Southwestern Medical Center, University of Texas at Dallas, Physics, Viginia State University, Jefferson Laboratory, Trinity University, LIGO, UTB-TSC, Mount Holyoke College, Texas A&M University, Electrical and Computer Engineering, TAMU, American Institute of Physics, University of Texas at Arlington, Texas Christian University, Fort Worth, TX, University of Pennsylvania, Philadelphia, PA, University of Missouri-Columbia, Columbia, MO, Paine College, Augusta, GA, Univ. of Edinburgh, INFN-LNS, INFN LNS CATANIA ITALY, Arkansas Technical University, AR, USA, Cyclotron Institute Texas A\&M University College Station Usa, and Heather Galloway, Texas State University--San Marcos