Using RPC Data to Assist CSC Data when Dealing with Pt Assignment

ORAL

Abstract

The Compact Muon Solenoid's (CMS) two main detectors used in the endcaps, the CSC and RPC, are positioned closely together [1]. This means that, while the RPC's main function is one of time synchronization and the CSC's is one of precise position measurement, the former may be able to be used as a supplement to the latter's data when assigning the momentum value (Pt) to a muon passing through the two detectors. Using the RPC's positions variable (Phi), a comparison was made between it and the CSC's Phi reading in order to determine whether there was sufficient correlation between them to use the RPC's data where the CSC has gaps. Preliminary results on this analysis will be presented. \\[4pt] [1] Wotschack, Joerg (CERN), ATLAS Muon Chamber Construction Parameters for CSC, MDT, and RPC chambers, ATL-MUON-PUB-2008-006, (2009)

Authors

  • John Bredemann

    University of Dallas

  • Hanu Arava

    University of Houston, University of Texas at Brownsville, None, Univ of Texas, San Antonio, University of Texas at El Paso, Univ of Arizona, Department of Physics and Astronomy and Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Laboratoire des Mat\'eriaux Avanc\'es, Universit\'e Claude Bernard Lyon 1, UTEP, University of Texas, Austin, University of Texas at Austin, Institute for Astronomy, Russian Academy of Sciences, University of Texas at Arlington, The University of Texas at Arlington, MIT, U. Mass. Dartmouth, Texas A{\&}M University, Texas Christian University, Laboratoire des Mat\'erieux Avanc\'es B\^atiment Virgo, Ion Beam Materials Laboratory, Los Alamos National Laboratory, Texas A\&M University, Accelerator Research Laboratory, University of Florida, The Ohio State University, Yale University, University of Guelph, Canada, Armagh Observatory, NASA-Ames, NASA-Goddard, Texas A\&M University-Commerce, Texas A\&M University, Hanyang University, Texas A\&M Univ, Department of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran, Physics Department, Texas State University at San Marcos

  • Hanu Arava

    University of Houston, University of Texas at Brownsville, None, Univ of Texas, San Antonio, University of Texas at El Paso, Univ of Arizona, Department of Physics and Astronomy and Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Laboratoire des Mat\'eriaux Avanc\'es, Universit\'e Claude Bernard Lyon 1, UTEP, University of Texas, Austin, University of Texas at Austin, Institute for Astronomy, Russian Academy of Sciences, University of Texas at Arlington, The University of Texas at Arlington, MIT, U. Mass. Dartmouth, Texas A{\&}M University, Texas Christian University, Laboratoire des Mat\'erieux Avanc\'es B\^atiment Virgo, Ion Beam Materials Laboratory, Los Alamos National Laboratory, Texas A\&M University, Accelerator Research Laboratory, University of Florida, The Ohio State University, Yale University, University of Guelph, Canada, Armagh Observatory, NASA-Ames, NASA-Goddard, Texas A\&M University-Commerce, Texas A\&M University, Hanyang University, Texas A\&M Univ, Department of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran, Physics Department, Texas State University at San Marcos