Quantum amplification by superradiant emission of radiation

ORAL

Abstract

A laser generates light through stimulated emission of radiation and requires population inversion. Quantum interference can yield lasing without inversion. However, such phase-sensitive quantum amplification still requires some atomic population in the excited state. We present a new kind of light amplifier (called the QASER) based on collective parametric resonance which, contrary to a laser, does not need any population in the excited state and generates high frequency coherent radiation by driving an atomic ensemble with a much smaller frequency. The amplification mechanism of the QASER is governed by the difference combination parametric resonance which occurs when the driving field frequency matches the frequency difference between two normal modes of the coupled light atom system. To achieve gain one must suppress AC Stark shift caused by the driving field. The resulting superradiant amplifier holds promise for a new kind of generator of high frequency (e.g. XUV or x-ray) coherent radiation utilizing a low frequency (e.g. infrared) drive. We present an experiment which demonstrates the QASER amplification mechanism in electronic circuit in the radio frequency range.

Authors

  • Anatoly Svidzinsky

    Texas A\&M University

  • Darren Depoy

    University of Michigan, Univeristy of Michigan, Texas A\&M University, UC Riverside, University of Massachusetts, STScI, NOAO, University of Texas, Cyclotron Institute, Texas A\&M University, ENEA, Italy, INFN, Italy, University of Texas at Austin, TX, Cyclotron Institute, TAMU, TX, Cyclotron Institute TAMU, TX, Cyclotron Institute - Texas A\&M University, Texas A\&M Univ, Texas A\&M University, Baylor University, Department of Physics and Astronomy, Texas A\&M University, College Station, Texas, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China, Department of Materials Science and Engineering, Texas A\&M University, College Station, Texas, Department of Mechanical Engineering, Texas A\&M University, College Station, Texas, Texas State University, University of Texas at Arlington, Lawrence Berkeley National Laboratory, DESY, Department of Physics and Astronomy, Texas A\&M University, Department of Physics, Syracuse University, Department of Physics and Astronomy, Vanderbilt University, Texas A\&M University, Princeton University and Baylor University, Texas A\&M Univ at Qatar, Kazan Federal University, Max Planck Institute for Nuclear Physics, Institue for Quantum Science and Engineering (IQSE) and Department of Physics \& Astronomy, Texas A\&M University, College Station, Texas 77843, USA, MIT, Sandia National Laboratories, Albuquerque, New Mexico, Postgrad, ORNL, Muons Inc., Texas Lutheran University, West Virginia University, Lawrence Livermore National Laboratory, University of Kentucky, US Naval Academy, University of Dallas, U.S. Naval Academy, Univ of Texas, Arlington, Department of Physics, Texas A\&M University, College Station, TX 77845, Science and Petroleum Departments, Texas A\&M University in Qatar, Doha, Qatar, Rice University, Houston, Texas, USA, Department of Physics, Texas State University, Florida A\&M University, Texas A\&M University in Qatar, Doha, Qatar, Physics and Astronomy Dept., TCU, Geology Dept., TCU, Colorado College, University of Texas at El Paso, University of Texas at Brownsville, Rochester Institute of Technology, Baylor University, Texas A\&M, Princeton University, Baylor University, Princeton University, Texas A\&M University, Materials Science and Engineering and Department of Physics and Astronomy, Texas A\&M University; WPI-AIMR, Tohoku University, Japan, WPI-AIMR, Tohoku University, Department of Chemistry, Texas A\&M University, Materials Science and Engineering and Department of Physics and Astronomy, Texas A\&M University, WPI-AIMR, Tohoku University, Japan, Department of Physics and Astronomy, Texas A\&M University, College Station, Texas 77843, USA, Department of Physics and Astronomy, Texas A\&M University and WPI-Advanced Institute for Materials Research, Tohoku University, Japan, University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, JILA, NIST, Department of Physics and Astronomy, Texas A\&M University and Institute for Quantum Studies and Engineering, College Station, TX 77843-4242, USA, Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov street, Nizhny Novgorod 603950, Russia, Department of Physics, University of Texas at Austin, Rice University, Texas A&M University

  • Darren Depoy

    University of Michigan, Univeristy of Michigan, Texas A\&M University, UC Riverside, University of Massachusetts, STScI, NOAO, University of Texas, Cyclotron Institute, Texas A\&M University, ENEA, Italy, INFN, Italy, University of Texas at Austin, TX, Cyclotron Institute, TAMU, TX, Cyclotron Institute TAMU, TX, Cyclotron Institute - Texas A\&M University, Texas A\&M Univ, Texas A\&M University, Baylor University, Department of Physics and Astronomy, Texas A\&M University, College Station, Texas, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China, Department of Materials Science and Engineering, Texas A\&M University, College Station, Texas, Department of Mechanical Engineering, Texas A\&M University, College Station, Texas, Texas State University, University of Texas at Arlington, Lawrence Berkeley National Laboratory, DESY, Department of Physics and Astronomy, Texas A\&M University, Department of Physics, Syracuse University, Department of Physics and Astronomy, Vanderbilt University, Texas A\&M University, Princeton University and Baylor University, Texas A\&M Univ at Qatar, Kazan Federal University, Max Planck Institute for Nuclear Physics, Institue for Quantum Science and Engineering (IQSE) and Department of Physics \& Astronomy, Texas A\&M University, College Station, Texas 77843, USA, MIT, Sandia National Laboratories, Albuquerque, New Mexico, Postgrad, ORNL, Muons Inc., Texas Lutheran University, West Virginia University, Lawrence Livermore National Laboratory, University of Kentucky, US Naval Academy, University of Dallas, U.S. Naval Academy, Univ of Texas, Arlington, Department of Physics, Texas A\&M University, College Station, TX 77845, Science and Petroleum Departments, Texas A\&M University in Qatar, Doha, Qatar, Rice University, Houston, Texas, USA, Department of Physics, Texas State University, Florida A\&M University, Texas A\&M University in Qatar, Doha, Qatar, Physics and Astronomy Dept., TCU, Geology Dept., TCU, Colorado College, University of Texas at El Paso, University of Texas at Brownsville, Rochester Institute of Technology, Baylor University, Texas A\&M, Princeton University, Baylor University, Princeton University, Texas A\&M University, Materials Science and Engineering and Department of Physics and Astronomy, Texas A\&M University; WPI-AIMR, Tohoku University, Japan, WPI-AIMR, Tohoku University, Department of Chemistry, Texas A\&M University, Materials Science and Engineering and Department of Physics and Astronomy, Texas A\&M University, WPI-AIMR, Tohoku University, Japan, Department of Physics and Astronomy, Texas A\&M University, College Station, Texas 77843, USA, Department of Physics and Astronomy, Texas A\&M University and WPI-Advanced Institute for Materials Research, Tohoku University, Japan, University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, JILA, NIST, Department of Physics and Astronomy, Texas A\&M University and Institute for Quantum Studies and Engineering, College Station, TX 77843-4242, USA, Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov street, Nizhny Novgorod 603950, Russia, Department of Physics, University of Texas at Austin, Rice University, Texas A&M University