Hyperpolarized $^{\mathrm{89}}$Y-EDTP and $^{\mathrm{89}}$Y-EDTP as potential pH-sensitive MRI agents

ORAL

Abstract

Transferring high thermal equilibrium polarization from electrons to nuclei, dynamic nuclear polarization (DNP) is capable of making NMR insensitive nuclei detectable at low concentration with no signal averaging. This high signal strength can be exploited in the liquid state using dissolution DNP, a process by which samples are polarized in the solid state and rapidly dissolved using a superheated solvent, creating a highly polarized, physiologically compatible liquid sample. In this study, we have investigated two ligands -- EDTP and DTPP -- as possible chelates in pH monitoring using yttrium-89. By using dissolution DNP, we have amplified the $^{\mathrm{89}}$Y NMR signals of $^{\mathrm{89}}$Y-DTPP and $^{\mathrm{89}}$Y-EDTP by \textgreater 10,000-fold and have found that both have chemical shift dependence on pH. $^{\mathrm{89}}$Y-EDTP has a chemical shift linearly dependent on pH between 5.7 and 9.15 with relatively large dispersion of almost 20 ppm, whereas $^{\mathrm{89}}$Y-DTPP exhibited a pH dependence on less than half this range. In vitro and potential in vivo studies of hyperpolarized $^{\mathrm{89}}$Y-EDTP and $^{\mathrm{89}}$Y-DTPP for pH imaging will be discussed.

Authors

  • Qing Wang

    The University of Texas at Dallas, Univ of Texas, Dallas, University of Texas at Dallas

  • Peter Niedbalski

    Univ of Texas, Dallas

  • Christopher Parish

    Univ of Texas, Dallas

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375