Searching for 1$+$3 Sterile Neutrinos with IceCube

ORAL

Abstract

Located at the South Pole, the IceCube neutrino observatory consists of a gigaton scale ice-Cherenkov neutrino detector instrumented with 5,160 digital optical modules providing sensitivity to neutrino events with energies ranging from the few GeV to several PeV scale. Within this range, IceCube's exceptional sensitivity to the matter-resonant depletion of the anti-muon neutrino flux in atmospheric neutrinos has led to the world-leading limits on the existence of sterile neutrinos consistent with the 3$+$1 model. Here I present the status of our latest sterile neutrino search applied to the 1$+$3 hypothesis with 1 year of IC86 data.

Authors

  • Timothy Watson

    University of Texas at Arlington

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375