Characterization of ParTI Phoswiches Using Charged Pion Beams

ORAL

Abstract

The Partial Truncated Icosahedron (ParTI) detector array consists of 15 phoswiches. Each phoswich is made of two scintillating components -- a thallium-doped cesium iodide (CsI(Tl)) crystal and an EJ-212 scintillating plastic -- coupled to a photomultiplier tube. Both materials have different scintillation times and are sensitive to both charged and neutral particles. The type of particle and amount of energy deposited determine the shape of the scintillation pulse as a function of time. By integrating the fast and slow signals of the scintillation pulses, a ``Fast vs. Slow Integration'' plot can be created that produces particle identification lines based on the energy deposited in the scintillating materials. Four of these phoswiches were taken to the Paul Scherrer Institute (PSI) in Switzerland where $\pi +$, $\pi $-, and proton beams were scattered onto the phoswiches to demonstrate their particle identification (PID) capabilities. Using digitizers to record the detector response waveforms, pions can also be identified by the characteristic decay pulse of the muon daughters.

Authors

  • Emily Churchman

    Texas Lutheran University

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375

  • Qiye Zheng

    Santa Fe Institute, Baylor University, University of Texas at Dallas, Department of Chemistry, The University of Texas at Austin, Jozef Stefan Institute, Texas A&M University-Commerce, Commerce, Texas 75429, Cyclotron Institute, Texas A&M University, College Station, Texas 77843, Texas A&M University, Department of Physics, Texas State University, Department of Physics, Baylor University, University of Texas at El Paso, Univ of Texas, El Paso, University of Science and Technology of China, The University of Texas at Dallas, Faculty, None, Southwestern University, Texas State University, Texas A&M University - Commerce, UT Southwestern Medical Center, National High Magnetic Field Laboratory, The Cyclotron Institute at Texas A&M University, Department of Biological Sciences, Texas State Univ-San Marcos, The University of Texas at Dallas, Richardson, Texas 75080, King Abdullah University of Science and Technology, Univ of Texas, Dallas, N.Chiao Tung U., UT Dallas, Inorganic Chemistry and Catalysis Group, Utrecht University, Electrical & Computer Engineering, Baylor University, Department of Materials Science and NanoEngineering, Rice University, University of Texas at Arlington, University of Chicago, The University of Mississippi, Astronomical Observatory, Warsaw University, Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Rochester Institute of Technology, California Institute of Technology, University of Houston, NASA-GSFC and UMBC, MD, Virginia Tech, VA, Texas Christian University, The University of Texas at San Antonio, Department of Physics, Teivecca Nazarene University, Weatherford College, Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, USA, Air Force Research Laboratory, Directed Energy Directorate, KAFB, NM, US, Department of Physics & Astronomy, University of Texas at San Antonio TX, USA, University of Arizona, University of North Carolina at Chapel Hill, Stanford University, Harvard Center for Astrophysics, Texas A\&M University, UTSW, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Boston College, Chestnut Hill, Massachusetts 02467, Naval Research Laboratory, Washington, D.C. 20375