Progress with a green astro-comb for exoplanet searches. Type: poster.

POSTER

Abstract

Searches for extrasolar planets using the precision stellar radial velocity (RV) measurement technique are approaching Earth-like planet sensitivity. Astro-combs, which consist of a laser frequency comb, coherent wavelength shifting mechanism (such as a doubling crystal and photonic crystal fiber), and a mode-filtering Fabry-Perot cavity (FPC), provide a promising route to increased accuracy and long-term stability on the astrophysical spectrograph calibration. We first present the design of a green astro-comb from an octave spanning Ti:Sapphire laser, spectrally broadened by custom tapered PCF to the visible band via fiber-optic Cherenkov radiation for frequency shifting, and filtered by a broadband FPC, constructed by a pair of complementary chirped mirrors. We also present results from three years of operation of the astro-comb calibrating the HARPS-N spectrograph at the Italian National Telescope on La Palma, Canary Islands, including its use in measurements of solar radial velocities as well as its use in searches for extrasolar planets.

Authors

  • David Phillips

    Harvard-Smithsonian Center for Astrophysics

  • Chih-Hao Li

    AOSense, Inc.

  • Alexander Glenday

    Komodo Health, Inc.

  • Dimitar Sasselov

    Harvard-Smithsonian Center for Astrophysics

  • Andrew Szentgyorgyi

    Harvard-Smithsonian Center for Astrophysics

  • Ronald Walsworth

    Harvard CfA, Harvard-Smithsonian Center for Astrophysics, Harvard-Smithsonian Center for Astrophysics and Harvard University, Harvard University, Harvard-Smithsonian Center for Astrophysics, Department of Physics, Harvard Unviersity