Breaking Into the Nuclear and Nucleosynthesis Codes

POSTER

Abstract

In 1964, astrophysicists John N. Bahcall showed that there was no evidence in support of the stellar model regarding the fusion of plasma protons into helium nuclei and provided a plan to measure the neutrino emission from the sun for that proof of concept. For every four protons that would fuse into helium, two e-neutrinos should be emitted. But sadly the tests failed, as only 25{\%} of the predicted flux was discerned. Subsequent attempts to modify the stellar and particle models to account for the missing neutrinos left inconclusive results. To find that supportive evidence, a study of the reverse of fusion comprising 2753 unstable isotopes was undertaken. This provided an archive of new information. That data disclosed both confirmations of many contemporary theories and assumptions for which no factual basis existed, as well as contradictions of several models and other universally accepted conclusions. These confirmations and contradictions are expressed in three formats under the above title. They include a power-point presentation, a paper that briefly describes some notable results, and the sum of the findings are detailed in a recent book. One of the primary topics of this work is in reference to the methods by which positively charged particles assemble into multi-particle nuclei, specifically those containing the highest quantity of nucleons. Although it is subject to peer review, nevertheless several persistent problems in stellar and nuclear physics have been unraveled by this research. For additional information, contact the author.

Authors

  • Eugene Pamfiloff

    Retired