Optimal non-local Franson bi-photon quantum interferometry via high-finesse cavities in quantum communications

ORAL

Abstract

The Franson interferometer has been a crucial tool for assessing a range of quantum applications, such as time-energy entanglement distribution, quantum key distribution, and quantum networks. Specifically, mode-locked biphoton frequency combs (BFCs) with discrete comb-like temporal correlations have significantly contributed to enhancing time-energy entanglement in these quantum applications. Nevertheless, we've noted that the visibility of Franson interference recurrence in BFCs tends to decrease as the cavity round trips are extended, resulting in a weakening of time-energy entanglement. In our research, we have identified the cavity finesse F as a pivotal parameter for optimizing non-local Franson biphoton interferometry and BFC time correlations. In our initial observations, BFCs with free-spectral ranges of 5.03 GHz and 15.15 GHz, each filtered with a cavity finesse F of 11.14, displayed a decay pattern of Franson interference recurrence and reduced time-energy entanglement. However, when we utilized a higher cavity finesse of 45.92 and filtered a 15.11 GHz BFC, we achieved an approximately 3.13-fold improvement in Franson interference visibility compared to the Franson visibility associated with a cavity finesse of 11.14, specifically at the sixth time bin. With a finesse of F = 200, we anticipate achieving near-optimal Franson interference recurrence and a time-bin Schmidt number of around 16 effective modes in a similar free-spectral range. Our experimental setup provides flexibility in adjusting cavity parameters, making it suitable for various quantum applications, including high-dimensional quantum information processing and robust quantum communications.

Publication: 1. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, "Mode-locked two-photon states," Phys. Rev. Lett. 91, 163602 (2003).
2. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, "Harnessing high-dimensional hyperentanglement through a biphoton frequency comb," Nat. Photonics 9, 536–542 (2015).
3. K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinoid, Y. S. Lee, T. Zhong, Y.-X. Gong, Z. Xie, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, "648 Hilbert space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition,"
npj Quantum Inf. 7, 48 (2021).
4. K.-C. Chang, X. Cheng, M. C. Sarihan, F. N. C. Wong, J. H. Shapiro, and C. W. Wong, "High-dimensional energy-time entanglement distribution via a biphoton frequency comb," in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of
America, 2021), paper FF1A.7.
5. K.-C. Chang, X. Cheng, M. C. Sarihan, W. Wang, F. N. C. Wong, J. H. Shapiro, and C. W. Wong, "Mode-locked phase coherent singly-resonant biphoton frequency comb," in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of
America, 2022), paper FTh5O.4.70.
6. J. H. Shapiro, "Coincidence dips and revivals from a Type-II optical parametric amplifier," in Conference on Nonlinear Optics (Optical Society of America, 2002), paper FC7-1.
7. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced down-conversion," Phys. Rev. Lett. 97, 223601 (2006).
8. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, "Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold," Appl. Phys. Lett. 91, 191104 (2007).
9. M. Scholz, L. Koch, and O. Benson, "Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion," Phys. Rev. Lett. 102, 063603 (2009).
10. F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Ceré, and M. W. Mitchell, "Atom-resonant heralded single photons by interaction-free measurement," Phys. Rev. Lett. 106, 053602 (2011).
11. D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. De Riedmatten, "Quantum storage of heralded single photons in a praseodymium-doped crystal," Phys. Rev. Lett. 112, 040504 (2014).
12. A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. De Riedmatten, "Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory," Phys. Rev. X 7, 021028 (2017).
13. A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, "Quantum storage of frequency multiplexed heralded single photons," Phys. Rev. Lett. 123, 080502 (2019).
14. R. Ikuta, R. Tani, M. Ishizaki, S. Miki, M. Yabuno, H. Terai, N. Imoto, and T. Yamamoto, "Frequency-multiplexed photon pairs over 1000 modes from a quadratic nonlinear optical waveguide resonator with a singly resonant configuration," Phys. Rev. Lett. 123, 193603
(2019).
15. D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, "Telecom-heralded entanglement between multimode solid-state quantum memories," Nature 594, 37–40 (2021).
16. T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, "Massive-mode polarization entangled biphoton frequency comb," Sci. Rep. 12, 8964 (2022).
17. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351,
1176–1180 (2016).
18. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M.
Weiner, "Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb," Optica 4, 655–663 (2017).
19. M. Kues, C. Reimer, P. Roztocki, L. Romero Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, "On-chip generation of high-dimensional entangled quantum states and their coherent control,"
Nature 546, 622–626 (2017).
20. H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, "Quantum interference and correlation control of frequency-bin qubits," Optica 5, 1455 (2018).
21. P. Imany, N. B. Lingaraju, M. S. Alshaykh, D. E. Leaird, and A. M. Weiner, "Probing quantum walks through coherent control of high-dimensionally entangled photons," Sci. Adv. 6, eaba8066 (2020).
22. R. H. Brown and R. Q. Twiss, "A test of a new type of stellar interferometer on Sirius,"; Nature 178, 1046–1048 (1956).
23. N. B. Lingaraju, H.-H. Lu, S. Seshadri, P. Imany, D. E. Leaird, J. M. Lukens, and A. M. Weiner, "Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence," Opt. Express 27, 38683–38697 (2019).
24. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløøwe, J. L. O'Brien, A. Laing, and M. G. Thompson, "Multidimensional quantum entanglement with large-scale integrated optics," Science 360, 285–291 (2018).
25. C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. R. Cortés, Y. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azaña, M. Kues, and R. Morandotti, "High-dimensional one-way quantum processing implemented on d-level cluster states," Nat. Phys. 15, 148–153 (2018).
26. D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O'Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, and M. G. Thompson, "Chip-to-chip quantum teleportation and multi-photon entanglement in silicon," Nat. Phys. 16, 148–153 (2020).
27. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, "Integrated photonic quantum
technologies," Nat. Photonics 14, 273–284 (2020).
28. I. Ali Khan, C. J. Broadbent, and J. C. Howell, "Large-alphabet quantum key distribution using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).
29. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding," New J. Phys. 17, 022002
(2015).
30. N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, "Provably secure and high-rate quantum key distribution with time-bin qudits," Sci. Adv. 3, e1701491 (2017).
31. C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, "Large-alphabet encoding for higher-rate quantum key distribution," Opt. Express 27, 17539–17549 (2019).
32. I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, and D. Bacco, "Efficient time-bin encoding for practical high-dimensional quantum key distribution," Phys. Rev. Appl. 14, 014051 (2020).
33. V. Tamma and S. Laibacher, "Multiboson correlation interferometry with arbitrary single-photon pure states," Phys. Rev. Lett. 114, 243601 (2015).
34. X.-J. Wang, B. Jing, P.-F. Sun, C.-W. Yang, Y. Yu, V. Tamma, X.-H. Bao, and J.-W. Pan, "Experimental time-resolved interference with multiple photons of different colors," Phys. Rev. Lett. 121, 080501 (2018).
35. S. Laibacher and V. Tamma, "From the physics to the computational complexity of multiboson correlation interference," Phys. Rev. Lett. 115, 243605 (2015).
36. A. P. Lund, M. J. Bremner, and T. C. Ralph, "Quantum sampling problems, BosonSampling and quantum supremacy," npj Quantum Inf. 3, 15 (2017).
37. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205–2208 (1989).
38. F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J.-Å. Larsson, G. Vallone, and P. Villoresi, "Postselection-loophole-free Bell violation with genuine time-bin entanglement," Phys. Rev. Lett. 121, 190401 (2018).
39. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
40. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957–13964 (2007).
41. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Efficient entanglement distribution over 200 kilometers," Opt. Express 17, 11440–11449 (2009).
42. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, "Entanglement distribution over 300 km of fiber," Opt. Express 21, 23241–23249 (2013).
43. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, "Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography," Laser Photon. Rev. 10, 451–457 (2016).
44. K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, "Two-photon comb with wavelength conversion and 20-km distribution for quantum communication," Commun. Phys. 3, 138 (2020).
45. Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, "Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry," Phys. Rev. Lett. 112, 120506 (2014).
46. F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, "Secure quantum key distribution with realistic devices," Rev. Mod. Phys. 92, 025002 (2020).
47. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, "Quantum repeaters based on atomic ensembles and linear optics," Rev. Mod. Phys. 83, 33–80 (2011).
48. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussiéres, M. George, R. Ricken, W. Sohler, and W. Tittel, "Broadband waveguide quantum memory for entangled photons," Nature 469, 512–515 (2011).
49. C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, "Quantum storage of photonic entanglement in a crystal," Nature 469, 508–511 (2011).
50. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, "Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre," Nat. Photonics 9, 83–87 (2015).
51. E. Saglamyurek, M. G. Puigibert, Q. Zhou, L. Giner, F. Marsili, V. B. Verma, S. W. Nam, L. Oesterling, D. Nippa, D. Oblak, and W. Tittel, "A multiplexed light-matter interface for fibre-based quantum networks," Nat. Commun. 7, 11202 (2016).
52. A. Tiranov, P. C. Strassmann, J. Lavoie, N. Brunner, M. Huber, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, M. Afzelius, F. Bussières, and N. Gisin, "Temporal multimode storage of entangled photon pairs," Phys. Rev. Lett. 117, 240506 (2016).
53. F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, "Distribution of high-dimensional entanglement via an intra-city free-space link," Nat. Commun. 8, 15971 (2017).
54. T. Ikuta and H. Takesue, "Four-dimensional entanglement distribution over 100 km," Sci. Rep. 8, 7 (2018).
55. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, "High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide," Opt. Express 17, 12019–12030 (2009).
56. B. A. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E.
Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire
single-photon detector," Nat. Photonics 14, 250–255 (2020).
57. J. G. Rarity and P. R. Tapster, "Experimental violation of Bell's inequality based on phase and momentum," Phys. Rev. Lett. 64, 2495–2498 (1990).
58. Z. Y. Ou and Y. J. Lu, "Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons," Phys. Rev. Lett. 83, 2556–2559 (1999).
59. C. E. Kuklewicz, E. Keskiner, F. N. C. Wong, and J. H. Shapiro, "A high-flux entanglement source based on a doubly resonant optical parametric amplifier," J. Opt. B Quantum Semiclass. Opt. 4, S162 (2002).
60. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, "Telecom-heralded single-photon absorption by a single atom," Phys. Rev. A 92, 063827 (2015).
61. O. Slattery, L. Ma, P. Kuo, and X. Tang, "Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity," Appl. Phys. B 121, 413–419 (2015).
62. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, "Sub-megahertz linewidth single photon source," APL Photon. 1, 096101 (2016).
63. O. T. Slattery, L. Ma, K. Zong, and X. Tang, "Background and review of cavity-enhanced spontaneous parametric down-conversion," J. Res. Natl. Inst. Stan. Technol. 124, 124019 (2019).
64. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, "Waveguide-based OPO source of entangled photon pairs," New J. Phys. 11, 113042 (2009).
65. C.-S. Chuu, G. Y. Yin, and S. E. Harris, "A miniature ultrabright source of temporally long, narrowband biphotons," Appl. Phys. Lett. 101, 051108 (2012).
66. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, "Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks," Phys. Rev. Lett. 110, 220502 (2013).
67. A. Ahlrichs and O. Benson, "Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect," Appl. Phys. Lett. 108, 021111 (2016).
68. P.-J. Tsai and Y.-C. Chen, "Ultrabright, narrow-band photon-pair source for atomic quantum memories," Quantum Sci. Technol. 3, 034005 (2018).
69. A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F. Fröwis, N. Brunner, M. Huber, and N. Gisin, "Quantifying photonic high dimensional entanglement," Phys. Rev. Lett. 118, 110501 (2017).

Presenters

  • Sophi C Song

    University of California, Los Angeles

Authors

  • Sophi C Song

    University of California, Los Angeles

  • Kai-Chi Chang

    University of California, Los Angeles

  • Xiang Cheng

    University of California Los Angeles, University of California, Los Angeles

  • Murat Can Sarihan

    University of California, Los Angeles

  • Chee Wei Wong

    University of California, Los Angeles