Machine Learning-Driven Predictions of Crystal Symmetry Groups Using Chemical Compositions in Binary and Ternary Materials
ORAL
Abstract
–
Publication: [1] Alghofaili, Yousef A., et al. "Accelerating Materials Discovery through Machine Learning: Predicting
Crystallographic Symmetry Groups." The Journal of Physical Chemistry C 127.33 (2023): 16645-16653.
[2] Alsaui, Abdulmohsen, et al. "Highly accurate machine learning prediction of crystal point groups for
ternary materials from chemical formula." Scientific Reports 12.1 (2022): 1577.
[3] Alsaui, Abdulmohsen A., et al. "Resampling techniques for materials informatics: limitations in crystal
point groups classification." Journal of Chemical Information and Modeling 62.15 (2022): 3514-3523.
[4] Baloch, Ahmer AB, et al. "Extending Shannon's ionic radii database using machine learning." Physical
Review Materials 5.4 (2021): 043804.
Presenters
-
Mohammed Alghadeer
University of California, Berkeley, University of Oxford
Authors
-
Mohammed Alghadeer
University of California, Berkeley, University of Oxford
-
Yousef A Alghofaili
Xpedite Information Technology
-
Abdulmohsen A Alsaui
King Fahd Univ KFUPM
-
Saad M Alqahtani
Jubail Industrial College
-
Fahhad H Alharbi
King Fahd Univ KFUPM, Department of Electrical Engineering, King Fahd University of Petroleum and Minerals