Machine Learning of Molecules and Materials: Materials I
FOCUS · K60 · ID: 2159456
Presentations
-
Overcoming the limits of approximate electronic structure models in machine learning accelerated materials discovery
ORAL · Invited
–
Presenters
-
Heather Kulik
MIT
Authors
-
Heather Kulik
MIT
-
-
Accelerating Computational Chemistry and Materials Science Research with Azure Quantum Elements
ORAL
–
Presenters
-
Martin Suchara
Microsoft Corporation
Authors
-
Martin Suchara
Microsoft Corporation
-
-
Accelerating materials discovery using integrated deep machine learning approaches
ORAL
–
Presenters
-
Weiyi Xia
Ames National Laboratory
Authors
-
Weiyi Xia
Ames National Laboratory
-
Ling Tang
Zhejiang University of Technology
-
Huaijun Sun
Zhejiang Agriculture and Forestry University
-
Chao Zhang
Yantai University
-
Kai-Ming Ho
Iowa State University
-
Gayatri Viswanathan
Iowa State University
-
Kirill Kovnir
Iowa State, Iowa State University, Department of Chemistry, Iowa State University; Ames National Laboratory (U.S. DOE)
-
Cai-Zhuang Wang
Ames National Laboratory, Iowa State University
-
-
Equivariant Graph Neural Networks for Predicting Spin-Crossover Energy in Transition Metal Complexes
ORAL
–
Presenters
-
Angel M Albavera Mata
University of Florida
Authors
-
Angel M Albavera Mata
University of Florida
-
Eric C Fonseca
University of Florida
-
Pawan Prakash
University of Florida
-
Samuel B Trickey
University of Florida
-
Richard G Hennig
University of Florida
-
-
Incorporating explicit electrostatic interactions in machine learning potentials
ORAL
–
Presenters
-
Max Veit
Aalto University
Authors
-
Max Veit
Aalto University
-
Miguel Caro
Aalto University
-
-
Designing Coarse-Grained Representations for Soft Materials using Attentive Message-Passing
ORAL
–
Publication: J. Charlie Maier, Chun-I Wang, and Nicholas E. Jackson, "Distilling Coarse-Grained Representations of Molecular Electronic Structure with Continuously Gated Message Passing" [under review]
Presenters
-
John C Maier
University of Illinois at Urbana-Champaign
Authors
-
John C Maier
University of Illinois at Urbana-Champaign
-
Chun-I Wang
University of Illinois, Urbana-Champaign
-
Nick E Jackson
Argonne National Laboratory, University of Illinois at Urbana-Champaign
-
-
ML Gradients in Molecular Simulations
ORAL · Invited
–
Presenters
-
Rafael Gomez-Bombarelli
MIT
Authors
-
Rafael Gomez-Bombarelli
MIT
-
-
Transferable diversity – a data-driven representation of chemical space
ORAL
–
Publication: Gould T, Chang B, Dale S., Vuckovic S: Transferable diversity – a data-driven representation of chemical space. ChemRxiv. Cambridge: Cambridge Open Engage; 2023; [https://chemrxiv.org/engage/chemrxiv/article-details/6511601aed7d0eccc32e3ace]
Presenters
-
Stefan Vuckovic
University of Fribourg
Authors
-
Stefan Vuckovic
University of Fribourg
-
Tim Gould
Griffith University
-
Bun Chan
Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
-
Stephen G Dale
Dalhousie Univ
-
Stephen G Dale
Dalhousie Univ
-
-
Active-Learning for Machine-Learned Interatomic Potentials; The Example of Strongly Anharmonic Materials
ORAL
–
Presenters
-
Kisung Kang
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin
Authors
-
Kisung Kang
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin
-
Christian Carbogno
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, The NOMAD Laboratory at the FHI of the Max Planck Society
-
Matthias Scheffler
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, The NOMAD Laboratory at the Fritz Haber Institute of the MPG, The NOMAD Laboratory at the FHI of the Max Planck Society
-
-
Electronic Structures of Ternary Compounds GeSbTe Based on Machine Learning Empirical Pseudopotentials
ORAL
–
Presenters
-
Sungmo Kang
Korea Institute for Advanced Study
Authors
-
Sungmo Kang
Korea Institute for Advanced Study
-
Rokyeon Kim
Korea Institute for Advanced Study
-
Young-Woo Son
Korea Institute for Advanced Study
-
-
Anharmonicity in cubic boron arsenide: a machine-learning based force-field study
ORAL
–
Presenters
-
Martin Callsen
Institute of Atomic and Molecular Sciences, Academia Sinica
Authors
-
Martin Callsen
Institute of Atomic and Molecular Sciences, Academia Sinica
-
Mei-Yin Chou
Institute of Atomic and Molecular Sciences, Academia Sinica, Academia Sinica
-