Electronic Structures of Mesoscopic Systems: Unlocking Opportunities with Machine Learning and Orbital-Free Embedding
ORAL
Abstract
* NSF CHE-2154760, OAC-1931473
–
Publication: Shao, X., Paetow, L., Tuckerman, M.E., Pavanello, M., Machine learning electronic structure methods based on the one-electron reduced density matrix. Nat Commun 14, 6281 (2023)
Jessica A. Martinez B, Lukas Paetow, Johannes Tölle, Xuecheng Shao, Pablo Ramos, Johannes Neugebauer, and Michele Pavanello. Which Physical Phenomena Determine the Ionization Potential of Liquid Water? The Journal of Physical Chemistry B, 127 (24), 5470-5480 (2023)
Xuecheng Shao, Andres Cifuentes Lopez, Md Rajib Khan Musa, Mohammad Reza Nouri, and Michele Pavanello
Adaptive subsystem density functional theory. Journal of Chemical Theory and Computation, 18 (11), 6646-6655 (2022)
K Jiang, X Shao, M Pavanello. Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory. Physical Review B 104, 235110 (2021)
Presenters
-
Michele Pavanello
Rutgers University - Newark
Authors
-
Michele Pavanello
Rutgers University - Newark