Statistical Physics Meets Machine Learning I
FOCUS · S28 · ID: 2154364
Presentations
-
Grokking and emergent capabilities in deep learning
ORAL · Invited
–
Publication: https://arxiv.org/pdf/2301.02679.pdf
Presenters
-
Andrey Gromov
University of Maryland, College Park
Authors
-
Andrey Gromov
University of Maryland, College Park
-
-
Average-Reward Reinforcement Learning Using Insights from Non-Equilibrium Statistical Mechanics
ORAL
–
Publication: "Entropy regularized reinforcement learning using large deviation theory": Phys. Rev. Research 5, 023085
"Bayesian inference approach for entropy regularized reinforcement learning with stochastic dynamics": PMLR 216:99-109, 2023Presenters
-
Jacob Adamczyk
University of Massachusetts Boston
Authors
-
Jacob Adamczyk
University of Massachusetts Boston
-
Argenis Arriojas Maldonado
University of Massachusetts Boston
-
Stas Tiomkin
San Jose State University
-
Rahul V Kulkarni
University of Massachusetts Boston
-
-
To grok or not to grok: Disentangling generalization and memorization on corrupted algorithmic datasets
ORAL
–
Presenters
-
Darshil H Doshi
University of Maryland, College Park
Authors
-
Darshil H Doshi
University of Maryland, College Park
-
Aritra Das
University of Maryland College Park
-
Tianyu He
University of Maryland, College Park
-
Andrey Gromov
University of Maryland, College Park
-
-
Generalization error in the spherical perceptron
ORAL
–
Presenters
-
Gilhan Kim
Seoul Natl Univ
Authors
-
Gilhan Kim
Seoul Natl Univ
-
Yongjoo Baek
Seoul National University
-
Hyungjoon Soh
Seoul Natl Univ
-
-
Criticality from the functional development of a learning machine
ORAL
–
Presenters
-
Ting-Kuo Lee
National Tsing Hua University
Authors
-
Ting-Kuo Lee
National Tsing Hua University
-
-
Training Machine Learning Emulators to Preserve Invariant Measures of Chaotic Attractors
ORAL · Invited
–
Publication: Accepted at NeurIPS 2023. (Preprint available: arXiv:2306.01187)
R. Jiang, P. Y. Lu, E. Orlova, and R. Willett, Training Neural Operators to Preserve Invariant Measures of Chaotic Attractors. Advances in Neural Information Processing Systems, 2023.Presenters
-
Peter Y Lu
University of Chicago
Authors
-
Peter Y Lu
University of Chicago
-
Ruoxi Jiang
University of Chicago
-
Elena Orlova
University of Chicago
-
Rebecca Willett
University of Chicago
-
-
Statistical mechanics of dynamical system identification
ORAL
–
Publication: Statistical Mechanics of Dynamical System Identification, A. A. Klishin, J. Bakarji, J. N. Jutz, K. Manohar, in preparation
Presenters
-
Andrei A Klishin
University of Washington
Authors
-
Andrei A Klishin
University of Washington
-
Joseph Bakarji
University of Washington
-
J. Nathan Kutz
University of Washington, AI Institute for Dynamic Systems
-
Krithika Manohar
University of Washington
-
-
Effective Dynamics of Generative Adversarial Networks
ORAL
–
Publication: S. Durr, Y. Mroueh, Y. Tu, and S. Wang. Effective dynamics of generative adversarial networks. Physical Review X 13, 041004 (2023).
Presenters
-
Shenshen Wang
University of California, Los Angeles
Authors
-
Shenshen Wang
University of California, Los Angeles
-
Steven Durr
University of California, Los Angeles
-
Youssef Mroueh
IBM T. J. Watson Research Center
-
Yuhai Tu
IBM T. J. Watson Research Center
-
-
Machine Learning that predicts well may not learn the correct physical descriptions of glassy systems.
ORAL
–
Presenters
-
Arabind Swain
Emory University
Authors
-
Arabind Swain
Emory University
-
Sean A Ridout
Emory University
-
Ilya M Nemenman
Emory, Emory University
-
-
Tracking parameter variations in nonlinear dynamical systems using machine learning
ORAL
–
Publication: Z.-M. Zhai, M. Moradi, M. Haile, and Y.-C. Lai, Tracking parameter variations in nonlinear dynamical systems using machine learning, planned papers (2023).
Presenters
-
Zheng-Meng Zhai
Arizona state university
Authors
-
Zheng-Meng Zhai
Arizona state university
-
Mohammadamin Moradi
Arizona State University
-
Ying-Cheng Lai
Arizona State University
-
-
Sparse spectra in learned representations of symmetries
ORAL
–
Presenters
-
Michael C Abbott
Yale University
Authors
-
Michael C Abbott
Yale University
-
Benjamin B Machta
Yale University
-