Optimizing machine learning electronic structure methods based on the one-electron reduced density matrix
ORAL
Abstract
–
Publication: [1] Y. Bai, L. Vogt-Maranto, M. E. Tuckerman, and W. J. Glover. Machine learning the Hohenberg-Kohn map for molecular excited states. Nature communications, 13:7044, 2022.
[2] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Mu ̈ller. Bypassing the Kohn- Sham equations with machine learning. Nature communications, 8:872, 2017.
[3] L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajaman- ickam, and A. Cangi. Predicting electronic structures at any length scale with machine learning. npj Computational Materials, 9:115, 2023.
[4] X. Shao, L. Paetow, M. E. Tuckerman, and M. Pavanello. Machine learning electronic structure methods based on the one-electron reduced density matrix. Nature Communications, 14:6281, 2023.
Presenters
-
Nicolas J Viot
Rutgers University - Newark
Authors
-
Nicolas J Viot
Rutgers University - Newark
-
Xuecheng Shao
Rutgers University - Newark
-
Michele Pavanello
Rutgers University - Newark